INTRODUCTION

Ochratoxicosis occurs less frequently in poultry than aflatoxicosis, but due to its acute toxicity it is more deadly. Ochratoxins are a family of toxic mixtures combined of three items, A, B and C, which are structurally linked and are produced by numerous species of fungus as secondary metabolites. Ochratoxin A not only reasons chicken disease, but it can also accumulate in the poultry's eggs and meat and thus enter the human food chain. All efforts should therefore be founded to safeguard commercial poultry birds from ochratoxin's toxic effects. In the event of clinical ochratoxicosis, another significant approach is to diminish damage and loss by improving the harmful impacts of OTA by several hepatoprotective and renal protective substances. A range of toxicants is presently using several chemical substances and plant extracts worldwide to treat liver, kidney damage and immunosuppression. Because of these mycotoxins, many hepatoprotective drugs are currently being used to avoid liver damage. Silymarin is important composite of antitoxins among these natural substances. Silymarin, an extract of Silibum marianum plants and fruits, is one of the most significant natural hepato-renal protective substances comprising a combination of isomers of flavonoids such as silibinin, isosilibinin, silydianin and silichristin (He et al., 2004). It was noted that Silymarin promotes immune status in the body (Wilsarsrumsue et al., 2002). It stopped the tumor necrosis factor (TNF)-α release from isolated neurons of Kupffer and the perfused rat liver (Al-Anati et al., 2009).

Silybum marianum, or milk thistle, is a well-known plant-mostly involved in Silymarin, its hepatotoxic extract, Silymarin includes numerous flavonolignans (silibinin, iso-silibinin, silychristin, isosilychristin, and silidianin) and a flavonoid (taxifolin; Federico et al., 2017) that together using anti-oxidant anti-inflammatory, anti-fibrotic, anti-lipid peroxidative, cell membrane stabilization and liver restoring effects. Metabolically, Silymarin stimulates the hepatic cells and induces the synthesis of ribosomal RNA to promote protein production (Vargas-Mendoza et al., 2014).

Given the foreseen importance of detoxification or neutralization of mycotoxins in poultry diets, this research...
aimed to further estimate feeding silymarin on productive performance and biochemical serum profile in laying hens object to dietary ochratoxin A.

MATERIALS AND METHODS

This research was done at the Poultry Research Station and the laboratories of the Animal and Poultry Research Institute, Agricultural Research Center, Agriculture Ministry, Egypt.

Production of Ochratoxin

Ochratoxin A (OTA) was produced from *Aspergillus ochraceus* (NRRL-3174) (acquired from the Department of the National Institute of Animal Health, Dokki, Egypt) as used by Stoev et al. (2019). The methodology for OTA production, examination and using are defined by Denev et al. (2020)

A total number of 120 Inshas, (Sina X Plymoth Rock) hens of 28 weeks of age were randomly allocated into 4 groups with 3 replicates each (10 hens). Birds were fed on the treatments followed, (Control): hen diet without any supplementation; (SL): control diet supplemented with SL (1000 mg/kg feed); (OTA-diet): control diet contaminated with 1000 ppb of OTA/kg diet, and (OTA+SL): OTA-diet plus SL (1000 mg/kg feed). The experimental duration spanned twelve weeks. The birds were provided on a commercial diet with 16% crude protein and 2750 kcal ME / Kg diets. There was no detectable ochratoxin or aflatoxin (< 1 µg / kg diet) in the basal diet. The birds were raised in an open-sided house on the ground under the same managerial circumstances. Artificially, the light schedule was kept to achieve 17 hours a day. During the experimental period, feed and water were offered ad libitum.

Silymarin

Silymarin with molecular weight 482.44 g/mol and purity (UV 60%) used in this search was manufactured by Samwon International LTD., Nanjing, China.

Parameters studied

Body weight (BW) was recorded at the beginning and end of the study to determine BW changes. Feed intake was measured weekly. The number of eggs and egg weight were recorded daily throughout the experiment.

At the end of the experimental period, three blood samples were gathered from each heparinized tube and used to evaluate subsequent hematological research. WBCs and RBC’s counts were produced using the method described by Natt and Herrick (1952) with the assistance of a hemocytometer. The technique described by Sharaf et al. (2010) has determined hemoglobin and PCV.

The levels of total protein, serum albumin, serum creatinine, AST, ALT, total cholesterol, and glucose. Globulin (determined by subtracting the albumin value from total protein). All biochemical blood constituents were commercially determined using Bio-Diagnostics Company, Egypt, commercially diagnosed kits. Glutathione activity (GSH) was assessed using whole heparinized spectrophotometrically and the Beutler et al. (1963) decrease technique of 5, 5 dithiobis (2- nitrobenzoic acid) (DTNB) glutathione (GSH). Lipid peroxide (Malondialdehyde) has been assessed spectrophotometrically using heparinized plasma, according to Ohkawa et al. (1979), a method based on thiobarbituric acid (TBA) reacted with malondialdehyde (MDA) in acid medium at 95 °C for 30 minutes.

Statistical analysis

Data from all factors of reaction were subjected to one-way variance assessment (SAS, 2000). Using Duncan's Multiple Range Test (1955), variables with an important F-test (P ≤ 05) were compared.

RESULTS

Productive performance

Results of body weight, feed intake (FI), egg production, and feed conversion ratio are presented in (Table 2), showed ochratoxin-A decreased productive performance parameters compared with the control bird while supplementing hen diets with SL in absence of OTA recorded significantly a higher final body weight, body weight gain, egg weight, egg production and feed intake (P ≤ 0.05) than all experimental groups. Incorporating SL into the OTA-contaminated diets alleviated the adverse effects of ochratoxin on productive performance.

Table 1 Chemical composition and calculated analysis of the basal experimental diet.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow corn</td>
<td>66.00</td>
</tr>
<tr>
<td>Soybean meal (44%)</td>
<td>24.00</td>
</tr>
<tr>
<td>Decalcium phosphate</td>
<td>1.71</td>
</tr>
<tr>
<td>Limestone</td>
<td>7.59</td>
</tr>
<tr>
<td>DL.Methionine</td>
<td>0.10</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>0.30</td>
</tr>
<tr>
<td>Vit.& Min. Mixture*</td>
<td>0.30</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

*Calculated analysis**

Crude Protein, % 16.43
Metabolizable energy (kcal/kg) 2750
Ether extract, % 2.70
Crude fiber, % 3.20
Calcium, % 3.33
Available phosphate, % 0.45
Total phosphorus, % 0.66
Methionine, % 0.39
Lysine, % 0.86
Determined analysis
Crude Protein, % 16.45
Ether extract, % 2.68
Crude fiber, % 3.18
Calcium,% 3.50
Total phosphorus, % 0.70

Supplied per kg of diet: Vit.A, 10000 IU; D3, 2000 IU; Vit.E, 10mg; Vit.K3,1mg; vit.B1, 1mg; vit. B2; 5mg; vit.B6, 1.5mg; vit. B12; 10mcg; Niacin, 30mg; Pantothenic acid, 10mg; Folic acid, 1mg; Biotin, 50µg; Choline, 260mg; Copper, 4mg; Iron; 30mg; Manganese, 60mg; Zinc; 50mg; Iodine, 1.3mg; Selenium, 0.1mg and Cobalt, 0.1mg.

Table 2 Effect of Silymarin (SL) for detoxification of ochratoxin contaminated diets on productive performance

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>SL</th>
<th>OTA OTA+SL</th>
<th>SEM</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight, (g)</td>
<td>1435.2</td>
<td>1450.2</td>
<td>1426.5</td>
<td>1435.0</td>
<td>8.14</td>
</tr>
<tr>
<td>Final body weight, (g)</td>
<td>1350.5</td>
<td>1590.0</td>
<td>1530.0</td>
<td>1560.0</td>
<td>8.31</td>
</tr>
<tr>
<td>Body weight gain, (g)</td>
<td>135.0</td>
<td>139.8</td>
<td>103.5</td>
<td>125.0</td>
<td>1.12</td>
</tr>
<tr>
<td>Body weight change, (%)</td>
<td>9.43</td>
<td>9.64</td>
<td>7.25</td>
<td>8.71</td>
<td>0.85</td>
</tr>
<tr>
<td>Egg number (egg/hen/ period)</td>
<td>60.00</td>
<td>63.00</td>
<td>56.00</td>
<td>58.00</td>
<td>1.17</td>
</tr>
<tr>
<td>Average egg weight, (g)</td>
<td>50.05</td>
<td>50.80</td>
<td>48.9</td>
<td>49.5</td>
<td>0.23</td>
</tr>
<tr>
<td>Egg mass (g/hen/day)</td>
<td>35.75</td>
<td>38.1</td>
<td>32.6</td>
<td>34.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Egg production, (%)</td>
<td>71.42</td>
<td>75.00</td>
<td>66.66</td>
<td>69.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Feed intake (g/hen/day)</td>
<td>110.2</td>
<td>112.4</td>
<td>108.9</td>
<td>110.5</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Feasible to the experimental period, the hemoglobin, packed cell volume and erythrocyte count of group-fed contaminated diet with OTA was significantly lower than the control group, while group-fed contaminated diets with SL, the AST, ALT, creatinine and uric acid concentration were non-significantly different from the control group (Table 3). At the end of the experimental period, the level of cholesterol in groups fed contaminated diets was considerably smaller than the control group while non-significantly different from the control group among all other groups. At the end of the experimental period, glucose concentration in groups fed contaminated diets with or without SL was significantly higher than the control group while the T2 was non-significantly different from the control group.

Table 3 Effect of Silymarin (SL) for detoxification of Ochratoxin-A contaminated diets on some blood constituents of laying hens.

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>SL</th>
<th>OTA</th>
<th>OTA+SL</th>
<th>SEM</th>
<th>sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. protein (g/dl)</td>
<td>5.80a</td>
<td>5.83a</td>
<td>5.00b</td>
<td>5.46e</td>
<td>0.067</td>
<td>*</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>2.76a</td>
<td>2.80a</td>
<td>2.40b</td>
<td>2.50o</td>
<td>0.038</td>
<td>*</td>
</tr>
<tr>
<td>Globulin (g/dl)</td>
<td>3.04a</td>
<td>3.03a</td>
<td>2.60b</td>
<td>2.96a</td>
<td>0.046</td>
<td>*</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>137.7a</td>
<td>135.0a</td>
<td>120.3a</td>
<td>131.7c</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>42.66c</td>
<td>40.00a</td>
<td>60.00b</td>
<td>47.33b</td>
<td>1.500</td>
<td>*</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>10.52a</td>
<td>11.00a</td>
<td>22.33b</td>
<td>14.60b</td>
<td>0.549</td>
<td>*</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>4.50a</td>
<td>4.43a</td>
<td>7.86b</td>
<td>5.30a</td>
<td>0.120</td>
<td></td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.453c</td>
<td>0.450a</td>
<td>0.956c</td>
<td>0.686b</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>225.36e</td>
<td>228.5a</td>
<td>295.8b</td>
<td>251.2a</td>
<td>3.145</td>
<td>*</td>
</tr>
<tr>
<td>Hematologic parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>11.65a</td>
<td>11.90a</td>
<td>9.10a</td>
<td>10.25b</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>PCV (%)</td>
<td>28.00a</td>
<td>27.60a</td>
<td>20.46b</td>
<td>25.17b</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>RBC’s (10^6/µL)</td>
<td>2.75a</td>
<td>2.68a</td>
<td>2.15a</td>
<td>2.44b</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>WBCs (10^3/µL)</td>
<td>24.25a</td>
<td>24.62a</td>
<td>27.26b</td>
<td>25.13b</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Oxidative statues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA (n mol/ml)</td>
<td>15.15a</td>
<td>10.62a</td>
<td>25.16b</td>
<td>17.26b</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>GSH (µM/ml)</td>
<td>15.8a</td>
<td>21.5a</td>
<td>7.56a</td>
<td>15.04b</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

**Means in the same row with different letters, differ significantly (P < 0.05). SEM: Standard error of the means.

Hematological parameters

At the end of the experimental period, the hemoglobin, packed cell volume and erythrocyte count of group-fed contaminated diet with OTA was significantly lower than the control group, while group-fed contaminated diets with SL, differed substantially from the control group. The hemoglobin, packed cell volume and count of erythrocytes in groups (SL), was not significantly distinct from the control group (Table 3). On the other hand, the count of white blood cells.

Oxidative statuses

The present results in Table 3 showed that MDA decreased significantly (P < 0.05) while GSH increased significantly in the group received SL compared to the group fed OTA alone.

Residual OTA in the eggs

Eggs analyzed at the end of the experiment for residual OTA showed that OTA in eggs gave negative results, nearly free from OTA.

DISCUSSION

Productive performance

Ochratoxin alone caused lower feed consumption, egg production, egg mass and average egg weight. Incorporating SL into the OTA-contaminated diets alleviated the adverse effects of ochratoxin on productive performance. The reduction in productive performance due to contaminated diets with ochratoxin in laying hens is in harmony with Stoev et al. (2002). Also, Elaroussi et al. (2006) noticed a significant decrease in body weight of chicks fed OTA-diets of 400 and 800 ppb. The diminution in productive performance during ochratoxidosis in this study may be attributed to several factors. OTA affects protein synthesis through competitive inhibition of phenylalanine-t-RNA-synthesis by phenylalanine moiety of the toxin. Moreover, ochratoxin-A interferes with DNA, RNA and protein synthesis and affects carbohydrate metabolism, particularly glucogenolysis (Kourd and Roschenthaler, 1998).

Concerning silymarin in absence of OTA recorded significantly higher production performance. In the same line, Muhammad et al. (2012) found that milk thistle addition (at 10 g/kg diet) significantly risen feed intake and improved feed conversion ratio. Abdalla, et al. (2018) found that the addition of milk thistle 25g /kg diet (equal to 1g Silymarin /kg diet) improved the performance of developed chickens under summer conditions. Moreover, birds with access to the silymarin exhibited greater productive performance provided further indication for possible mycotoxin counteracting effects of silymarin. These results are in the line with the findings of Khaleghi-poura et al. (2020). Gowda and Sastry (2000) showed the improvement of silymarin on productive performance and attributed these effects to antioxidant activity that stimulated protein synthesis by the bird’s enzymatic system.

Serum biochemical parameters

The decrease in serum total protein, albumin, and globulin values in birds supplied with OTA could be due to inhibition of hepatic protein synthesis that happened at post-transcription stage by competitive inhibition of phenylalanine-t-RNA-synthesis, thus stopping amino-acylation and peptide elongation. One of the main impacts of binding albumin on OTA was to delay its elimination by restricting the transfer of OTA from the bloodstream to the hepatic and renal cells that contribute to its long half-life.

In the present investigation, the AST and ALT levels in ochratoxin treated birds increased significantly than the control birds. In the current research, the rise in AST level could be attributable to enzyme leakage owing to liver damage. Our findings are in agreement with Wang et al. (2009), who
discovered that OTA-contaminated diets for 21-days-old broiler chicken could considerably increase ALT and AST blood serum operations.

As regards silymarin evidence, these findings are consistent with Shaker et al. (2010) suggested that Silybum marianum was used to alleviate liver disease and that this may be due to a potent mixture of silymarin and its mechanism of action mainly as antiralical and anticanicogenic functions that could be attributed to lower liver enzyme levels. Besides, Khaleghipoura et al. (2020) found that the inclusion of 500 mg / kg silymarin-nanohydrogle in drinking water could substantially offset the impaired growth output and alter hepatic function in Japanese quails fed on a 2,2 mg aflatoxin-contaminating diet.

In this research, at the end of the experimental period, the creatinine values of groups fed contaminated diets with or without SL were considerably greater from the control group. Our findings of enhanced creatinine values are consistent with earlier reported outcomes from broilers (Sawale et al., 2009).

In groups fed diets containing SL, were non-significantly different from the control group. It indicates amelioration of adverse effects of OTA with these agents like SL. The finding is consistent with Bhattachrya (2011) who stated the silymarin helps preserve normal renal function and that silibinin reduces oxidative damage to in vitro kidney cells.

During induced ochratoxicosis, reduction in serum cholesterol levels reflects impaired liver metabolism, resulting in lower cholesterol synthesis, as was also evident in this study. The substantial increase in the amount of SL augmented mycotoxic layer serum cholesterol is representative of its protective function. Significantly enhanced levels of blood glucose in layers fed on OTA contaminated diets may eventually result from liver tissue damage. OTA also influences the metabolism of carbohydrates, especially gluconeogenesis. It decreases the renal mRNA coding of carboxykinase phosphoenolpyruvate (PEPCK), which is the main enzyme in gluconeogenesis. PEPCK is the connection in glucose and glycogen between the citric acid cycle intermediates and their precursors (Leeson et al., 1995). Interference in gluconeogenesis with this rate-limiting step plays the main role in the growth of renal cortex functional harm (Ueno, 1991).

Verma and Shalini (1998), found that OTA was able to cause hyperglycemia in rabbits, support our results. Experimental results exhibited that compared to the control group, blood glucose level was not substantially affected by diets supplied with silymarin. However Bhattachrya (2011), stated that silymarin can protect the pancreas against certain types of injury.

Hematological parameters

Blood white cells counts (WBCs) of the group fed contaminated diets with ochratoxin without SL, was substantially greater than the control group at the end of the experimental period, while non-significantly different from the control group and all other groups. Similar to our results, Elaroussi et al. (2006) exposed anemia (diminution of RBC’s, PCV and Hb) in OTA poisoned broiler birds, this is associated with feed intoxication by OTA. The decrease in the amount of hemoglobin in founding during ochratoxicosis, as noted in the current research, could be due to decreased protein synthesis (Table 3). Supplementation of SL on the parameters examined in haematology was seen as resisting the change caused by OTA. Abdalla, et al. (2018) who found that, cockerels fed diets supplied with 25g Milk thistle /kg diet (equal to 1g silymarin /kg diet) were significantly improved red blood cells counts (RBCs), hemoglobin (Hb), blood white cells counts (WBCs), packed cell volume (PCV), lymphocyte, phagocytic activity (PA) and phagocytic index (PI) percentages compared to the control group during summer season.

Oxidative statues

Because several mycotoxins including aflatoxin B1, fumonisin B1, deoxynivalenol, T-2 toxin, and ochratoxin-A are known to damage lipid peroxidation cell membranes, the therapeutic characteristics of antioxidant nutrients have been explored against mycotoxins.

The present results in Table 3 showed that MDA decreased significantly (P<0.05) while GSH increased significantly in group received SL compared to group fed OTA alone.

Only one can hypothesize the mechanism of silymarin action against OTA intoxication. Many writers have shown that OTA activation is a complicated method regulated by various cytochrome P450 enzymes in human and rat liver (Gallagher et al., 1996). Silymarin can inhibit the cytochrome P450 system, as stated by Baer-Dubowska et al. (1998), and thus inhibit OTA activation. Silymarin increases hepatic glutathione and may boost the antioxidant defense of the liver. It has also been shown that Silymarin increases protein synthesis in hepatocytes by stimulating RNA polymerase I activity (Yu et al., 2018).

Abdalla, et al. (2018) found that the addition of 1 g silymarin / kg diet significantly improved TAC, GSH, MDA during the summer season compared with the control.

Residual OTA in the eggs

Eggs analyzed at the end of the experiment for residual OTA showed that OTA in eggs gave negative results, nearly free from OTA. When hens were fed diet containing OTA at 0.3 and 1 mg /kg of feed, Krogh et al. (1996) did not detect OTA in eggs. In contrast, Juszkiewicz et al. (1982) detected OTA in the eggs of laying hens fed OTA at 10 mg/kg of body weight. These results suggest that the passage of OTA from fed into eggs is possible, but only when OTA intake is very high. Therefore, the risk of OTA intake by humans as a consequence of eggs consumption is extremely low.

It may be concluded from the results of this research that birds held on silymarin, showed comparable hemato-biochemical reactions to control group reactions. Birds fed SL, with 1000 ppb OTA showed enhancement in hemato-biochemical reactions, almost comparable to control birds, indicating a protective impact of SL against OTA. These agents/substances may be used asprotective agents in poultry to ameliorate the adverse effects of ochratoxin A.

References
